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Supplementary Materials and Methods 

Historical climate data for the statistical dengue model 
Historical climate data were obtained from the Climate Data Store (https://cds.climate.copernicus. eu/). Hourly near-
surface temperature (K) and hourly rainfall flux (kg m−2 s−1) were retrieved from the bias corrected near-surface 
meteorological variables (WFDE5) derived from the fifth generation of the European Centre for Medium-Range 
Weather Forecasts atmospheric reanalyses (ERA5) on a 0.5 × 0.5 deg latitude-longitude grid for land pixels only for 
the period January 1999 to December 2017. Monthly relative humidity (%) was obtained for the same period from the 
ERA5 reanalysis on a 0.25 × 0.25 deg latitude-longitude grid. Hourly data were aggregated at monthly time steps 
using standard methods in the Climate Data Operators (CDO) software.1 Spatial aggregation at the province (admin1) 
level was conducted in R version 3.6.1 using the raster R package.2 

Climate data for the experiments 
Bias-corrected mean surface temperature (K), total monthly precipitation (kg m−2 s−1), and relative humidity (%) data 
were retrieved at a 0.5 × 0.5 deg global grid spatial resolution at daily time steps from the ISI-MIP server 
(https://esg.pik-potsdam.de/projects/isimip/). Data were obtained for four GCM (HadGem2-ES, IPSL-CM5A-LR, 
MIROC-ESM-CHEM, GFDL-ESM2M) to investigate effects across a wide range of climatic changes. Data were 
retrieved for each GCM across four RCP emission scenarios (arranged from the most conservative to business as 
usual: RCP2.6, RCP4.5, RCP6.0 and RCP8.5) to represent a suite of radiative forcings. RCPs are named based on 
their end-of-century radiative forcing levels. Thus, RCP2.6 indicates a 2.6 W m-2 increase in radiative forcing relative 
to pre-industrial conditions. Climate data were aggregated at monthly time steps for some disease models (i.e., 
LMM_R0, LCMI, DGM, UMEÅ-albopictus and UMEÅ-aegypti) using standard methods in the Climate Data 
Operators software.1 Historical climate data were collated for the period 1951–2005, and future scenario data for the 
period 2006–2099. 

SSP-RCP scenario combinations 
We explored a suite of RCP-SSP combinations to explore the potential effects of multiple emission and socioeconomic 
scenarios.3 Table 2 depicts the scenarios selected in our study. SSP1-RCP2.6 represents the lower end on the range of 
future radiative forcing pathways albeit with substantial land use change.3 SSP2-RCP2.6 is also at the lower end of 
future radiative forcing pathways but its land use and aerosol pathways are not extreme compared to other SSPs.3 
SSP2-RCP4.5 is at the middle of the range of future radiative forcing pathways and combines intermediate 
socioeconomic vulnerability with intermediate forcing.3 SSP2-RCP6.0 is also at the medium range of future radiative 
forcing pathways combined with an intermediate socioeconomic scenario.3 SSP5-RCP8.5 represents the high end of 
the range of future forcing pathways combined with an intermediate socioeconomic scenario.3 SSP5-RCP8.5 
represents the high end of the range of future radiative forcing pathways, and is combined with the only socioeconomic 
scenario able to produce a radiative forcing of 8.5 W m-2 by 2100.3 

Table A2: RCP-SSP scenario matrix illustrating. Each cell indicates a combination between a representative 
concentration pathway and a shared socioeconomic pathway (SSP) 

 
 RCP2.6 RCP4.5 RCP6.5 RCP8.5 

SSP1 X    

SSP2 X X X X 
SSP5    X 
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Epidemiological data for calibrating VECTRI 
The VECTRI model is calibrated using a machine learning technique based on a constrained genetic algorithm outlined 
in.4 An ensemble of 80 gridded simulations (where the size of the grid is defined by that of the climate input) are 
conducted for the period of 1980 to 2012 at daily time steps for the Ethiopian region, with each simulation using a 
perturbed value for 18 key model parameters that govern the mosquito and parasite life cycle, such as the gonotrophic 
and sporogonic cycle length and the vector mortality for example. Each simulation is assigned a probability related to 
the simulations’ skill level and a likelihood of the parameter settings. The model skill is determined by the probability 
of finding the parasite ratio recorded at over 200 field observation sites within Ethiopia collated for the Malaria Atlas 
Project,5 comparing the simulation at the same locations and dates of the observations. The penalty function is instead 
the probability of the model parameter settings given the prior assessment of their default value and uncertainty. This 
latter cost-function contribution penalizes models that employ parameter settings that lie far outside their assessed 
probable range. The settings in the next generation of models are adopted according to this probability, while a small 
number undergo mutation to allow the model to explore the parameter space. 

Epidemiological data for the statistical dengue model 
Monthly dengue cases for the period January 2000 to December 2017 at the province (i.e. admin1) level were obtained 
from a suite of sources (Table 1) for Argentina, Brazil, Cambodia, Colombia, Ecuador, El Salvador, Indonesia, 
Malaysia, Mexico, Nicaragua, Panama, Paraguay, Peru, Philippines, Singapore, Thailand, and Vietnam. 
Epidemiological data for Cambodia and Vietnam could only be obtained at the national and annual levels for the 
period 2011-2017. Annual dengue data were linearly downscaled at the province and disaggregated at the monthly 
levels using the historical mean monthly proportion of cases for each province following Gaffin et al, (2004).6 

Table A1: Sources of the epidemiological data used to train the statistical dengue model. 

COUNTRY PERIOD COVERED SOURCE 

Argentina Jan 2004 – Oct 2004 https://www.tycho.pitt.edu/data/#datasets 

Argentina Jan 2011 – Dec 2017 https://www.argentina.gob.ar/salud/epidemiologia/boletines2011 

Brazil Jan 2010 – Dec 2017 http://datasus.saude.gov.br/acesso-a-informacao/doencas-e-agravos-de-notificacao-de-
2007-em-diante-sinan/ 

Cambodia Jan 2000 –Dec 2010 https://www.tycho.pitt.edu/data/#datasets 

Cambodia Jan 2011 – Dec 2017 http://cdcmoh.gov.kh/surveillance/camewarn 

Colombia Jan 2007 – Dec 2017 https://www.minsalud.gov.co/salud/Paginas/BOLETINESEPIDEMIOLOGICOS.aspx´ 

Ecuador Jan 2013 – Dec 2017 https://www.salud.gob.ec/gaceta-epidemiologica-ecuador-sive-alerta/ 

El Salvador Jan 2000 – Dec 2010 https://www.tycho.pitt.edu/data/#datasets 

El Salvador Jan 2011 – Dec 2017 https://www.salud.gob.sv/boletines-epidemiologicos-2020/ 

Indonesia Jan 2000 – Dec 2010 https://www.tycho.pitt.edu/data/#datasets 

Indonesia Jan 2011 – Dec 2017 https://pusdatin.kemkes.go.id/folder/view/01/structure-publikasi-data-pusat-data-dan-
informasi.html 

Malaysia Jan 2000 – Dec 2010 https://www.tycho.pitt.edu/data/#datasets 

Malaysia Jan 2011 – Dec 2017 https://www.data.gov.my/data/en US/dataset/penyakit-denggi/resource/276e6916-
19a0-49da-8b64-1cd4b70ad082 

Mexico Jan 2000 – Dec 2017 https://epidemiologia.salud.gob.mx/anuario/html/anuarios.html 

Nicaragua Jan 2000 – Apr 2005 https://www.tycho.pitt.edu/data/#datasets 

Panama Mar 2003 – Apr 2005 https://www.tycho.pitt.edu/data/#datasets 

Panama Jan 2015 – Dec 2017 https://www.mida.gob.pa/direcciones/direcciones nacionales/direcci-n-nacional-de-
salud-animal/boletines-epidemiol-gicos.html 
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Paraguay Mar 2012 – Dec 2017 http://www.vigisalud.gov.py 

Peru Mar 2004 – Dec 2017 https://www.dge.gob.pe/portalnuevo/publicaciones/boletines-epidemiologicos/ 

Philippines Jan 2000 – Dec 2010 https://www.tycho.pitt.edu/data/#datasets 

Philippines Mar 2013 – Dec 2017 https://www.doh.gov.ph/statistics 

Singapore Jan 2000 – Dec 2010 https://www.tycho.pitt.edu/data/#datasets 

Singapore Jan 2001 – Dec 2017 https://www.moh.gov.sg/resources-statistics/infectious-disease-statistics/2018/weekly-
infectious-diseases-bulletin 

Thailand Jan 2000 – Dec 2010 https://www.tycho.pitt.edu/data/#datasets 

Thailand Jan 2011 – Dec 2017 https://wesr.doe.moph.go.th 

Vietnam Jan 2000 – Dec 2010 https://www.tycho.pitt.edu/data/#datasets 
 

Vietnam Jan 2011 – Dec 2017 http://soyte.hatinh.gov.vn/tin-tuc-su-kien/thong-tin-y-te/kiem-tra-giam-sat-sot-xuat-
huyet-tai-xa-ky-thu-huyen-ky-anh.html 

 
Technical details of the Umeå models 
The R0 values derived from the UMEÅ-albopictus and UMEÅ-aegypti models follow from a vectorial capacity (VC) 
computation, which expresses the average daily rate of subsequent cases in a susceptible population resulting from 
one infected case. Computations were estimated as follows: 

𝑉𝐶 =	−!"!#"$#

%&	($)
  

where a is the average vector biting rate, bm is the probability of vector infection and transmission of virus to its 
saliva, n is the extrinsic incubation period, m denotes the female mosquito to human population ratio, and p is the daily 
survival probability. All parameters are temperature dependent and are further described in Rocklöv and Tozan 
(2019).7 The female mosquito populations are estimated as potential vector abundance for Aedes aegypti and Aedes 
albopictus.8 Stage-structured data-driven dynamical models were used to describe the population dynamics of Ae. 
aegypti (UMEA-aegypti) and Ae. albopictus (UMEA-albopictus).8,9 

 
These models account for the effects of temperature, precipitation and day-light length on the ecological processes of 
the mosquito-population dynamics. Temperature and precipitation inputs were derived from climate data (see 
subsection Climate data for the experiments). Day-light length was computed using a standard periodic function 
depending on latitude [9, 10]. For an in-depth model-description of the Ae. aeqypti model, see Liu-Helmersson et al., 
(2019),8 and for the Ae. albopictus model, see Di Sierra et al., (2018).9 

 

VC depends only on vector biology and is intrinsically related to the basic reproduction number (R0) for vector-borne 
diseases, which is the expected number of hosts to be infected by a single infected host in a susceptible population. R0 

is formulated as follows: 

𝑅* =
𝑉𝐶𝑏+
𝑟+

 

We accounted for global spatiotemporal dynamics of the mosquito populations. The spatial resolution of the global 
models was 0.5 × 0.5 deg. We used daily time-steps for solving the models, and presented the results at monthly time-
steps. We assume well-mixed mosquito populations within 0.5 × 0.5 deg grid-cells. The models compute the 
population-density of mosquitoes independently in each grid cell. Accordingly, we recover the spatiotemporal pattern 
in population-density of Ae. aegypti and Ae. albopictus, respectively, accounting for the effects of the environment, in 
terms of temperature, precipitation, and day-light length, on mosquito-population density. The dynamical systems 
were, respectively, numerically solved using the deSolve package11 in R for the population-density of blood-feeding 
adult mosquitoes. 
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The results on the length of transmission-season (LTS) and the population at risk (PAR) were both based on R0 values. 
The ratio between number of mosquitoes that could potentially be in contact with humans, to the number of humans, 
is central to the R0 value. The original mosquito-population models provide results in terms of the number of 
individuals of Ae. aegypti per breeding site (X), or the number of Ae. albopictus per hectare (Y).8,9 In order to 
appropriately consolidate mosquito population density and human population density (p), we multiplied X by f(p,a,c) 
= a ∗ g(p,c) where a equals to the number of breeding-sites per human, and Y by f(p,a/b,c) = a ∗ g(p,c)/b where b 
equals the average number of breeding sites per hectare. The function g(p,c) = p2/(c2 +p2) is an increasing sigmoidal 
function that equals the viability of domesticated mosquito-populations in relation to human population density. 
Accordingly, f(p,a,c) is a multiplicative factor to R0, which allowed us to straightforwardly estimate correct values for 
a, a/b and c by fitting R0 to R0-data that was available for a subset of the spatiotemporal points.12 

Technical details of the statistical dengue model 
Let Yi,t be the number of dengue cases for administrative unit i = 1, ···, I at month t = 1, ···, T where I is the total 
number of administrative units in the data set, and T the total number of time steps for which the model will be run be 
modelled using a generalised additive mixed model (GAMM). Models were fitted using a negative binomial 
specification to account for potential over-dispersion in the data. The general algebraic definition of the models is a 
simplified version of a model previously used [13] and is given by: 

  
 
where E[Y ] ≡ µ and var(Y ) ≡ µ(1+µ/φ); φ is the dispersion parameter; α denotes the intercept; log(Pi,a[t]) indicates 
the logarithm of the total population for each administrative unit i and year a[t], included as an offset; X is a matrix 
of k = 1, ···, 3 smooth functions of the meteorological variables (mean temperature, precipitation and relative 
humidity) defined as linear regression splines f; D is the population density per km2 in administrative unit i at year 
a[t] with regression coefficient ϵ. Long-term trends are modelled using unstructured random effects for each year 
(γi,a[t]). Seasonal trends are accounted for using cyclic cubic splines δ for each calendar month m[t] so that the first 
month of the year depends on the last month of the previous year.14 Unknown confounding factors, such as public 
health interventions were incorporated using unstructured random effects (ui) for each administrative unit. Models 
were fitted in R version 3.6.1 using the mgcv package.14 

 
Technical details of the VECTRI model 
The mathematical model of VECTRI is outlined in Tompkins and Ermert (20013).15 In each grid cell of the simulation 
domain, it uses a daily timestep to integrate a set of prognostic equations for the larvae density divided into a number 
of growth-stage bins, the vector density divided into sporogonic status bins and the progression of the disease in a 
human host using a classical compartmental SEIR (susceptible, exposed, infectious, recovered) approach, with the 
exposed category also divided into disease-progression bins, and the immune R class divided between infectious and 
non-infectious states. Temperature impacts the larvae, adult vector and parasite development rates and the vector and 
larvae mortality. The model version used is v1.8.2. Differences to the original model v1.2.615 include: (i) an improved 
hydrological treatment of puddles;16 (ii) the replacement of the bin-resolved gonotrophic cycle in adult mosquitoes 
with a standard formulation using a single prognostic equation. This change has little impact on results but benefits 
greatly the speed of execution and memory requirements; (iii) the implementation of host immunity based on Asare 
et al., (2016);17 (iv) an adjusted temperature used in the sporogonic cycle to account for the indoor hut temperature for 
a proportion of the day;18 (v) diffusion of mosquitoes between adjacent model grid cells;19 and (vi) a machine learning 
calibration technique outlined above and detailed in Tomkins and Thompson (2018).4 
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Supplementary Figures 
	

 

Fig A1: Average future change in LTS (months) as a function of average annual temperature (x-axis in degrees 
Celsius) and rainfall (y-axis in mm year-1) for A) VECTRI, B) LMM_R0, C) LCMI, D) DGM, E) UMEÅ-albopictus, 

and F) UMEÅ-aegypti. Differences in LTS are calculated between future time slices (2010–2039, 2040–2069 and 
2070–2099) and the 1970–1999 reference period for the historical simulations. Future time slices are calculated for 
all RCP-SSP2 simulations and all grid points per disease model. Associated average temperature and rainfall values 

are calculated for the same future time slices. 
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Fig A2: Ensemble mean of the simulated length of the transmission season of malaria (in months) over the baseline 
period 1970–1999 stratified per climate model. 

 

Fig A3: Ensemble mean of the simulated length of the transmission season of dengue (in months) over the baseline 
period 1970–1999 stratified per climate model. 
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Fig A4: Ensemble mean of the simulated length of the transmission season of malaria over the period 2070–2099 
stratified per RCP-SSP scenario. 
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Fig A5: Ensemble mean of the simulated length of the transmission season of dengue over the period 2070–2099 
stratified per RCP-SSP scenario. 
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Fig A6: Ensemble mean of the simulated changes in the length of the transmission season of malaria over the period 
2070–2099 stratified per RCP-SSP scenario. 
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Fig A7: Ensemble mean of the simulated changes in the length of the transmission season of dengue over the period 
2070–2099 stratified per RCP-SSP scenario. 
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Fig A8: Ensemble mean of the simulated changes in the population at risk of malaria transmission per RCP-SSP 
scenario. 

 

Fig A9: Ensemble mean of the simulated changes in the population at risk of dengue transmission per RCP-SSP 
scenario. 
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Fig A10: Mean projected population density per SSP scenario for the period 2070–2099. 
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Fig A11: Simulated length of the transmission season of malaria for the period 1970–1999 for the LCMI and 
LMM_R0 models stratified by climate model. 
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Fig A12: Simulated changes in the length of the transmission season of malaria over the period 2070–2099 for the 
LCMI and LMM_R0  models, and for the RCP2.6 scenario stratified by climate model. 
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Fig A13: Simulated changes in the length of the transmission season of malaria over the period 2070–2099 for the 
LCMI and LMM_R0 models, and for the RCP4.5 scenario stratified by climate model. 
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Fig A14: Simulated changes in the length of the transmission season of malaria over the period 2070–2099 for the 
LCMI and LMM_R0 models, and for the RCP6.0 scenario stratified by climate model. 
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Fig A15: Simulated changes in the length of the transmission season of malaria over the period 2070–2099 for the 
LCMI and LMM_R0 models, and for the RCP8.5 scenario stratified by climate model. 
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Fig A16: Simulated length of the transmission season of malaria over the period 1970–1999 for the VECTRI model 
stratified by climate model. 
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Fig A17: Simulated changes in the length of the transmission season of malaria over the period 2070–2099 for the 
VECTRI model, and for the RCP2.6-SSP1 scenario stratified by climate model. 
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Fig A18: Simulated changes in the length of the transmission season of malaria over the period 2070–2099 for the 
VECTRI model, and for the RCP2.6-SSP2 scenario stratified by climate model. 
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Fig A19: Simulated changes in the length of the transmission season of malaria over the period 2070–2099 for the 
VECTRI model, and for the RCP4.5-SSP2 scenario stratified by climate model. 
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Fig A20: Simulated changes in the length of the transmission season of malaria over the period 2070–2099 for the 
VECTRI model, and for the RCP6.0-SSP2 scenario stratified by climate model. 
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Fig A21: Simulated changes in the length of the transmission season of malaria over the period 2070–2099 for the 
VECTRI model, and for the RCP8.5-SSP2 scenario stratified by climate model. 
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Fig 22: Simulated changes in the length of the transmission season of malaria over the period 2070–2099 for the 
VECTRI model, and for the RCP8.5-SSP5 scenario stratified by climate model. 
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Fig A23: Simulated length of the transmission season for dengue over the period 1970–1999 stratified by climate 
model. 
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Fig A24: Simulated changes in the length of the transmission season for dengue over the period 2070–2099 for the 
RCP2.6-SSP1 scenario stratified by climate model. 
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Fig A25: Simulated changes in the length of the transmission season for dengue over the period 2070–2099 for the 
RCP2.6-SSP2 scenario stratified by climate model. 
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Fig A26: Simulated changes in the length of the transmission season for dengue over the period 2070–2099 for the 
RCP4.5-SSP2 scenario stratified by climate model. 
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Fig A27: Simulated changes in the length of the transmission season for dengue over the period 2070–2099 for the 
RCP6.0-SSP2 scenario stratified by climate model. 
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Fig A28: Simulated changes in the length of the transmission season for dengue over the period 2070–2099 for the 
RCP8.5-SSP2 scenario stratified by climate model. 
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Fig A29: Simulated changes in the length of the transmission season for dengue over the period 2070–2099 for the 
RCP8.5-SSP5 scenario stratified by climate model. 
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